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such an approximation is valued whenever phase and group
velocities are not too different from each other. It is the purpose
of the present letter to show that this may not be a correct
criterion to choose. In fact, even though group and phase veloci-
ties differ by a small amount the above approximation may still
produce an imperfect temperature compensation (i.e., a,70). In
the following, a quantitative evaluation of this phenomenon is
presented in conjunction with “unapproximated” design for-
mulas for the TLDL.

Let us use the primed quantities /; p to indicate the solutions
to the system of (1) and (3). They are found to be [1]:
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where C is the velocity of light in vacuum, A, p=(w/2
€ctt 4, 8)(O€ctr 4, /0W), €ur 4 p are the effective dielectric con-
stants of delay lines (4) and (B), and w is the angular operation
frequency. Note that 1+ A is the ratio between phase and group
velocity along a transmission line.

When /; p are substituted into (2), it turns out that
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The fact that a} 50 indicates that the approximate lengths I, 5
cause the transmission phase of the device to be thermally
unstable. From (5), via (3) and (4) a} may be cast under the
form
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From (6) it is recognized that, given two substrate materials with
a4 and ap, it is sufficient that 1+A,=1+A4p to have a3=0.
However this condition is unrealistic as, in general, the two
MIC’s have different frequency dispersion. In a practical situa-
tion with 1+A,<1+Ap, af is different from zero and may be
calculated by use of (6).

For the case reported in [1] of a composite TLDL with
BaTi O, and Al,O; substrates, |a,|=3.9x107%/°C, az=80.1
X1076/°C, A,=1.077, Ap=1.033, and a}=0.148% 1075/°C.
Whether this value of o} is acceptable depends on the system’s
specs. Note that the measured value of the total transmission
phase temperature coefficient a, reported in [1] is 0.6+0.3X%
1075/°C.

A different situation wherein the approximation is certainly
not valid because a¥ is a considerable portion of the maximum
acceptable «,, however, may be encountered in practice for
materials with different physical properties than those reported
in [1]. In fact, one may wish to use MIC’s with higher negative
dielectric constant temperature coefficients and compensate them
with MIC’s on substrates other than single crystal sapphire (e.g.,
with ceramic allumina). For instance a type of commercially
available BaTi O, exists with |a|=15%107°/°C [2]. Using this
material together with allumina (ap=50X 1076/°C) we built a
composite TLDL operating at 14.125 GHz with a group delay
time of 16.66 ns, corresponding to a 1-symbol duration in a 120

Mbit/s DC-QPSK signal. In this device the characteristic im- -
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pedances of the two partial delay lines at zero frequency were 30
2 and 50 £, respectively.

As a consequence 1+A,/1+A5=1.0471 and a}=0.538X
10=¢/°C. This value of is 34.3 percent of the spec value of
a,=1.57x107%/°C corresponding to a stability of +2 degrees
over a temperature interval of 30°C. Under these circumstances
the approximation of [1] is not accurate and the partial delay
line lengths /, and /p must be calculated using the following
“exact” formulas obtained from the (1) and (2)

/ agrC
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On the basis of the above results we conclude that, in general,
formulas (4) are a good approximation to formulas (7) whenever
the substrate material with negative dielectric constant tempera-
ture coefficient is highly stable, i.e., a, is very small. Further-
more, inspection of (6) reveals that this result is pretty much
independent of the value of a for all practical situations wherein
144, /1+Ag=1.
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Periodically Loaded Transmission Lines
JOSE PERINI

Abstract—In this paper equations for the transmission parameters of a
periodically loaded line are derived in closed form with no restriction on
the size, type, or number of discontinuities. The equations also take into
consideration any attenuation that may exist on the line.

Several plots of the input reflection coefficient and transmission coeffi-
cient are presented and compared with experimental results. The agree-
ment is very good.

I. INTRODUCTION

It is common practice to try to maximize the transfer of power
to a load at the end of a long transmission line by minimizing
the input reflection coefficient of the system. In this paper it is
shown that if the line has periodically distributed discontinuities,
which is quite common, then this procedure may lead to quite
the opposite result. More recently, interest in the switching
characteristics of pulses in such lines has resulted in their being
approximately analyzed. [1]. Pulse switching is an important
problem in the design of high-speed digital computers. In this
paper a closed form solution for the periodically loaded line is
obtained. The equations can handle any type of discontinuity
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Fig. 1. (a) Transmission line cell. (b) Periodically loaded line.

and attenuation on the line. The only restriction is that the
discontinuities must be identical and periodically distributed. By
appropriate limiting procedures many of the results reported
elsewhere can be easily derived {2]-[5]. Comparison with experi-
ment shows very good agreement.

II. THEORETICAL TREATMENT

Consider the transmission parameters [6] of a cell of the
transmission line as shown in Fig. 1(a). It consists of a length of
line / of characteristic admittance Y, and a shunt admittance y
(normalized with respect to ¥;). The transmission matrix is

__1 [@+2r)e ™ Tev
14T _re—yl eyI

where y=a+/f is the propagation constant, a being the attenua-
tion per meter and B=2x/A. In (1) T is the reflection coefficient
of y in parallel with the characteristic admittance of the line.

If N identical sections are cascaded as shown in Fig, 1(b), then
the total transmission matrix will be

Ty=T%.

T O]

0))
To raise T to the Nth power the Chebyschev polynomials of
second kind

sin A{ Ncos h~1z]

Uy_(2)= 3
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can be used as suggested in the literature [7}, [8]. Therefore,
Tn=TUy_(2)—1Uy_»(2) 4
where [ is the identity matrix and z is given by
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Equations (4) and (5) solve the problem completely.

Some of the quantities of interest are the input reflection
coefficient and the transmission coefficient of the whole line
when terminated by the characteristic admittance. This is readily
obtained from (4). The input reflection coefficient is

vy Te 2"Uy_,(2)
I‘N=V—L = y 1_1 (6)
Ulet=0 Uy_1(2)—(1+T)e " Uy_,(2)
and the transmission coefficient is
Vs 14T)e™ "
k| - e o O
Vi lot=o Uy—1(2)=(1+T)e™"Uy_5(2)

III. IMPORTANT RESULTS

From (6) and (7) some interesting and important results can
easily be derived [9]. Note that they furnish magnitude and
phase information of Iy and 7y. A list of some of the more
important results follows.
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Fig. 2. Capacitive discontinuities. |I'|=0.27. N=10.
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Fig. 3. (a) 10 capacitive discontinuities, |I'|=0.27. (b) 10 resistive discon-
tinuities, | T'| =0.33. (c) 10 lossy capacitive discontinuities. 82245°, |T'|=0.39.

1) For reactive discontinuities the maximum Ty and the
minimum 7y are coincident (and vice versa). From energy con-
siderations this should be expected (lossless lines). See Fig. 2
and 3.

2) For resistive discontinuities the maximum 7, corresponds to
the maximum T. This was somewhat surprising. See Figs. 4 and
3(b).

3) For reactive discontinuities, lossless lines and m2 </<(m
+ 13, m=0,1,2,--+, there will be N—1 values for / for which
Ty=0.
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Fig. 4. Resistive discontinuities. |I'|=0.33. N=10.

1] ol 0.2 03 0.4 05 0.6 /X

Fig. 5. Lossy capacitive discontinuities. (Tan §=<1). |T'{=0.39. N=10.
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Fig. 6. Experimental setup.

4) For discontinuities which are a general admittance there is
no simple relation between the maxima and the minima of Ty
and 7y. See Figs. 5 and 3(c). 7y exhibits a minima that should be
avoided if maximum power transfer is sought.

5) For resistive discontinuities the maximum I'y and 7y will
occur at multiples of A/2 and the minimum at odd multiples of
A/4.

6) For the case of discontinuities which are not purely resistive
the maximum of Ty will occur when / is slightly shorter or
slightly larger than an even multiple of A/2. These cases will
correspond to inductive or capacitive discontinuities, respec-
tively.

7) In the case of discontinuities which are a general admit-
tance 7, and I'y will have an assymmetrical behavior as shown in
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Figs. 5 and 3(c). This is important when maximum transfer of
power is sought, )

8) For lossless lines I'y and |7y | will be periodic functions of /
with period A/2.

9) For small discontinuities the input reflection coefficient
behaves like the array factor of N equally spaced antennas (5).

IV, EXPERIMENTAL VERIFICATION

In order to verify some of the results obtained by (6) and (7)
the setup of Fig. 6 was used with 10 sections of waveguide. The
discontinuities were introduced at each joint. Instead of varying
the distance between the discontinuities the frequency was swept
in an appropriate range. As the discontinuities used change very
slowly with frequency the results are essentially the same as
varying the length of the waveguide sections. The agreement
with the computed results is very good as seen in Fig. 3(a), (b),
and (c) and Figs. 2, 4, and 5.
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Resonant Frequencies of Rectangular Dielectric
Resonators

J. F. LEGIER, P. KENNIS, S. TOUTAIN, AND J. CITERNE

Abstract—The resonant frequencies of isolated dielectric resonators of
rectangular shape are calculated using the dielectric waveguide model. The
waveguide treatment of the rectangular dielectric rod is solved using the
approximate semianalytical techniques of Marcatili, Knox, and Toulios.
The accuracy with measured frequencies appears satisfactory with the
former approach.

I. INTRODUCTION

The dielectric resonators of cylindrical shape excited by the
TE,, mode, are used in many miniaturised microwave circuits.
The resonant frequency of this mode can be estimated quite
accurately from various approximate models.

This paper deals with dielectric resonators of rectangular
shape, for which only one attempt, that of Guillon and Garault
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