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such an approximation is valued whenever phase and group

velocities are not too different from each other. It is the purpose

of the present letter to show that this may not be a correct

criterion to choose. In fact, even though group andphaseveloci-

ties differ by a small amount the above approximation may still

produce an imperfect temperature compensation (i.e., a++ O).In
the following, a quantitative evaluation of this phenomenon is
presented in conjunction with “unapproximated” design for-
mulas for the TLDL.

Let us use the primed quantities 14,~ to indicate the solutions
to the system of (1) and (3). They are found to be [1]:

1>=
llBTc

(aB+laAl)(l+A.)~

1~=
laAlrC

(aB+la.l)(l+AB)~
(4)

where C is the velocity of light in vacuum, AA, ~ = (0/2

feff”, B)( ~ceff ~, ~/i3 0), e~f ~, B are the effective dielectric con-

stants of delay lines (A) and (B), and a is the angular operation

frequency. Note that 1 + A is the ratio between phase and group

velocity along a transmission line.

When 12,~ are substituted into (2), it turns out that

The fact that a$ #0 indicates that the approximate lengths 12,B

cause the transmission phase of the device to be thermally

unstable. From (5), via (3) and (4) a$ may be ~st under fie

form

l+AA ,
— -
l+AB -

~$ =
1 l+AA 1 “

—— —
aB l+AB + laAl

(6)

From (6) it is recognized that, given two substrate materials with

a~ and ax, it is sufficient that 1 + AA = 1 + AB to have a:= 0.

However this condition is unrealistic as, in general, the two

MIC’S have different frequency dispersion. In a practical situa-

tion with 1 + AA + 1+ AB, a; is different from zero and may be

calculated by use of (6).

For the case reported in [1] of a composite TLDL with

BaTi409 and A1203 substrates, Ia~ I = 3.9 x 10-6/OC, aB= 80.1

X 10–6/OC, AA= 1.077, AB= 1.033, and CK;=O.148 X 10-6/OC.

Whether this value of a$. is acceptable depends on the system’s

specs. Note that the measured value of the total transmission

phase temperature coefficient a+ reported in [11 is 0.6*0.3x
lo-6/”c.

A different situation wherein the approximation is certairdy

not valid because a; is a considerable portion of fie maximum

acceptable aq, however, may be encountered in practice for
materials with different physical properties than those reported
in [1]. In fact, one may wish to use MIC’S with higher negative
dielectric constant temperature coefficients and compensate them
with MIC’S on substrates other than single crystal sapphire (e.g.,
with ceramic allurnina). For instance a type of commercially
available BaTiq09 exists with Ia~ I= 15X 10– ‘i/ “C [2]. Using this

material together with allurnina ( aB = 50 X 10-‘/ ‘C) we built a
composite TLDL operating at 14.125 GHz with a group delay
time of 16.66 ns, corresponding to a l-symbol duration in a 120
Mbit/s DC-QPSK signal. In this device the characteristic im-

pedances of the two partial delay lines at zero frequency were W3

!2 and 50 Q respectively.

As a consequence 1+ A~/1 + AB= 1.0471 and a$ =0.538)x:

10-6/”C. This value of is 34.3 percent of the spec value of

a+= 1.57 x 10-6/“C corresponding to a stability of %2 degrees

over a temperature interval of 30°C. Under these circumstances

the approximation of [1] is not accurate and the partial delay

line lengths 1A and lB must be calculated using the following

“exact” formulas obtained from the (1) and (2)

IA=- aBrc

[aD(l+A4)+laA[( l+ AB)]~

IB=-
laAlrC

(i’)
[aB(l+AA)+la4[( l+ AB)]~ “

On the basis of the above results we conclude that, in general,

formulas (4) are a good approximation to formulas (7) whenever

the substrate material with negative dielectric constant tempera-

ture coefficient is highly stable, i.e., a~ is very small. Further-

more, inspection of (6) reveals that this result is pretty much

independent of the value of aB for all practical situations wherein

l+ AA/l+ ABGll.
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Periodically Loaded Transmission Lines

JOSE PERINI

Abstnzct-In this paper equations for the transmission parameters of n

periodically loaded fine are derived fn closed form with no restriction on
the Sk * or number of diaeontinuities. The equations also take into
consideration srty attenuation that may exist on the line.

Several plots of the input reflection coefficient mtd transmission coeffi-
dent are presented and compared with experimental remits. The agree-
ment IS very good.

I. INTRODUCMON

It is common practice to try to maximize the transfer of powe]r

to a load at the end of a long transmission line by minimizing

the input reflection coefficient of the system. In this paper it is

shown that if the line has periodically distributed discontinuities,

which is quite common, then this procedure may lead to quite

the opposite result. More recently, interest in the switching

characteristics of pulses in such lines has resulted in their being

approximately analyzed. [1]. Pulse switching is an important

problem in the design of high-speed digital computers. In this

paper a closed form solution for the periodically loaded line is

obtained. The equations can handle any type of dkmntinuity
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Fig. 1. (a) Transmission line cell. (b) Periodically loaded line.

and attenuation on the line. The only restriction is that the

discontinuities must be identical and periodically distributed. By

appropriate limiting procedures many of the results reported

elsewhere can be easily derived [2]-[5]. Companion with experi-

ment shows very good agreement.

II. Tmommc& TREATMENT

Consider the transmission parameters [6] of a cell of the

transmission line as shown in Fig. l(a). It consists of a length of

line 1 of characteristic admittance YO and a shunt admittance y

(normalized with respect to YO). The transmission matrix is

1
–[

(l+2r)e-Y{ re’~

‘= 1 +r _re-y[ eYl 1 (1)

where y = a +j~ is the propagation constant, a being the attenua-

tion per meter and B= 2 T/A. In (1) r is the reflection coefficient

of y in parallel with the characteristic admittance of the line.

If N identical sections are cascaded as shown in Fig. l(b), then

the total transmission matrix will be

TN= TN. (2)

To raise T to the Nth power the Chebyschev polynomials of

second kind

U&l(z)=
sinh[Ncosh-lz]

sin h [COSh– 12]
(3)

can be used as suggested in the literature [7], [8]. Therefore,

TM= TUN_l(z)–ZUN_2(z) (4)

where Z is the identity matrix and z is given by

z=*[e’’+(l+2r).-]’]. (5)

Equations (4) and (5) solve the problem completely.

Some of the quantities of interest are the input reflection

coefficient and the transmission coefficient of the whole line

when terminated by the characteristic admittance. This is readily

obtained from (4). The input reflection coefficient is

r .E re-2~’uN_,(z).
N Vr ~;=~ UN_,(z)–(1+1’)oW-,N_2(z)

(6)

and the transmission coefficient is

~N= E (1+r)e-’/
~F .;=O= UN_l(z)–(l +r)e-Y’U~_z(z) “

(7)

III. IMPORTANT RESULTS

From (6) and (7) some interesting and important results can

easily be derived [9]. Note that they furnish magnitude and

phase information of r~ and TN. A list of some of the more

important results follows.

Fig. 2. Capacitive discontinuities. 117[ = 0.27. N= 10.
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Fig. 3. (a) 10 capacitive discontinuities, [r I = 0.27. (b) 10 resistive discon-
tinuities, Ir I= 0.33. (c) 10 lossy capacitive discontinuities. 8=45°, Ir I= 0.39.

1) For reactive discontinuities the maximum I’N and the

minimum TN are coincident (and vice versa). From energy con-

siderations this should be expected (lossless lines). See Fig. 2

and 3.

2) For resistive discontinuities the maximum TN corresponds to

the maximum I’N. This was somewhat surprising. See Figs. 4 and

3(b).

3) For reactive discontinuities, Iossless lines and m}< 1< (m

+1)$, m=0,1,2,..., there will be N– 1 values for 1 for which

rN= o.
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Fig. 5. Lmsy capacitive discontinuities. (Tan 8E 1). ]r I= 0.39. N= 10.
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Fig. 6, Experimental setup.

4) For discontinuities which are a general admittance there is

no simple relation between the maxima and the minima of l?~

and r~. See Figs, 5 and 3(c). r~ exhibits a minima that should be

avoided if maximum power transfer is sought.

5) For resistive discontinuities the maximum r~ and TN wilf

occur at multiples of A/2 and the minimum at odd multiples of

A/4.

6) For the case of discontinuities which are not purely resistive

the maximum of I’~ will occur when 1 is slightly shorter or

slightly larger than an even multiple of A/2. These cases will

correspond to inductive or capacitive discontinuities, respec-

tively.

7) In the case of discontinuities which are a general admit-

tance Tn and r~ will have an asymmetrical behavior as shown in

Figs. 5 and 3(c). This is important when maximum transfer of

power is sought.

8) For lossless lines r~ and ITN I wilf be periodic functions of 1

with period A/2.

9) For small discontinuities the input reflection coefficient

behaves like the array factor of N equally spaced antennas (5).

IV. EXPmUMENTALWXUFICATION

In order to verify some of the restdts obtained by (6) and (7)
the setup of Fig. 6 was used with 10 sections of waveguide. The
discontinuities were introduced at each joint. Instead of varying
the distance between the discontinuities the frequency was swept
in an appropriate range. As the discontinuities used change very

slowly with frequency the results are essentially the same as
varying the length of the wavegttide sections. The agreement
with the computed results is very good as seen in Fig. 3(a), (b),
and (c) and Figs. 2, 4, and 5.
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Resonant Frequencies of Rectangular Dlekctric

Resonators

J. F. LEGIER, 1P.KENNIS, S. TOUTAIN, AND J. CITERNE

A&n7ct-Tlw resonant frequencies of isolated dielectric resonators of

~ shape are cafeufated using the dielectric waveguide model. The
waveguide treatment of the mctangdar dielectric rod is solved wing the

approximate senrfanalytkd techniques of Marea~ Kno& and Toufios,
The aceuraey with measured freqttencies appeam satisfactory * the
former approach.

I. IWRODUCTION

The dielectric resonators of cylindrical shape excited by the

TEO1 mode, are used in many miniaturised microwave circuits.

The resonant frequency of this mode can be estimated quite

accurately from various approximate models.

This paper deals with dielectric resonators of rectangular

shape, for which only one attempt, that of Guillon and Garatdt
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